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a b s t r a c t 

A class of over-braced but typically flexible body-hinge frameworks is described. They are based on poly- 

hedra with rigid faces where an independent subset of faces has been replaced by a set of holes. The 

contact polyhedron C describing the bodies (vertices of C ) and their connecting joints (edges of C ) is 

derived by subdivision of the edges of an underlying cubic polyhedron. Symmetry calculations detect 

flexibility not revealed by counting alone. A generic symmetry-extended version of the Grübler–Kutzbach 

mobility counting rule accounts for the net mobilities of infinite families of this type (based on subdivi- 

sions of prisms, wedges, barrels, and some general inflations of a parent polyhedron). The prisms with 

all faces even and all barrels are found to generate flexible perforated polyhedra under the subdivision 

construction. 

The investigation was inspired by a question raised by Walter Whiteley about a perforated polyhedron 

with a unique mechanism reducing octahedral to tetrahedral symmetry. It turns out that the perforated 

polyhedron with highest ( O h ) point-group symmetry based on subdivision of the cube is mechanically 

equivalent to the Hoberman Switch-Pitch toy. Both objects exhibit an exactly similar mechanism that 

preserves T d subgroup symmetry over a finite range; this mechanism survives in two variants suggested 

by Bob Connelly and Barbara Heys that have the same contact graph, but lower initial maximum sym- 

metry. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

A trend in the treatment of mobility of frameworks composed

f arrays of bodies connected by hinges is of the application

f symmetry, wherever possible, to the counting of net mobility

 − s, the balance of freedoms and constraints (or equivalently

f mechanisms and states of self-stress) ( Connelly et al., 2009;

owler and Guest, 20 0 0, 20 02; Guest and Fowler, 20 05, 2010;

uest et al., 2010; Röschel, 2012; Schulze et al., 2014; Schulze and

hiteley, 2011 ). One particular flexible framework realised as a

olydron 

TM model was described in a 2014 Fields Institute lecture

y Walter Whiteley, at a meeting held to mark his 70th birthday;

is observation of a symmetry-breaking mechanism of the model

nspired the present investigation of an open-ended class of mobile

rameworks based on the cubic polyhedra. 

The basic object that sparked this investigation is W. Two

urther variants, R and B, emerged in discussions with Bob
∗ Corresponding author. Tel.: +44 114 222 9538; fax: +44 114 222 9346. 

E-mail addresses: p.w.fowler@sheffield.ac.uk (P.W. Fowler), sdg@eng.cam.ac.uk 
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onnelly and Barbara Heys. In W six disjoint square faces of an oc-

ahedrally symmetric Archimedean polyhedron, the (small) rhom-

icuboctahedron ( Cundy and Rollett, 1961 ), have been replaced by

oles. B is also derived from this polyhedron. R is derived from the

seudo-rhombicuboctahedron discovered by Miller, as described in

ouse Ball and Coxeter (1987) . All three objects are illustrated in

ig. 1 . All exhibit a symmetry-breaking finite mechanism. Applica-

ion of the established techniques for symmetry extension of mo-

ility rules ( Guest and Fowler, 2005 ) leads to an account of net

obility in all three structures. Interestingly, the explanation for

he finite mechanism in W, which takes the structure from octahe-

ral O h to tetrahedral T d symmetry, turns out to be identical with

he symmetry account of the mechanism of the famous Hoberman

witch-Pitch toy ( Chen et al., 2016; Hoberman, 2004 ) 

The motivation for our symmetry treatment of an infinite class

f structures is the initially surprising flexibility of some heavily

ver-constrained objects. W is an object with maximum octahe-

ral rotational and reflectional symmetry belonging to the point

roup O h , which has 48 symmetry operations. Although over-

raced by six states of self-stress according to simple counting, this

ramework has a mechanism that preserves the 24 symmetries of

he tetrahedral T d point group along a finite path that proceeds

own from the high-symmetry point until a special geometry is
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Fig. 1. Physical models of W, R and B, constructed from Magnetic Polydron TM components. Rows (a), (b) and (c) correspond to W, R and B, respectively. Each row shows 

points on the path of the characteristic mechanism: initial high-symmetry configuration; the distortion mechanism, showing the halving of the symmetry group; the fully 

collapsed configuration after the pathway has passed through the multifurcation. 
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reached where multifurcation into lower symmetries takes place.

The multi-branched pathway for further distortion starts at the

point where each of four square faces becomes co-planar with its

neighbours and can individually move radially in or out. Variants

R ( C 4 v ) and B ( D 4 h ) show similar mechanisms that lead to halv-

ing of the symmetry group, with branching, and the possibility of

further symmetry loss, at the co-planarity point or points. Fig. 1

shows snapshots along the path of the mechanism in W, R and B.

In the following, we use the symmetry-extended mobility criterion

to place the flexes of W, R and B in the context of infinite families

of perforated polyhedra. 

While we restrict attention to symmetric structures and their

symmetry-induced mobility in this paper, we note that the mo-

bility analysis of generic perforated polyhedral structures (with-

out symmetry), under the term ‘block-and-hole’ polyhedra, is cur-

rently also an active area of research. In particular, it was shown in

( Finbow-Singh and Whiteley, 2013 ) that under certain conditions,

a generic embedding of a simplicial spherical polyhedron (which

is rigid by Cauchy’s rigidity theorem) remains rigid if a triangu-

lated disc is cut out and new constraints are added into an essen-
ially disjoint disc to create a rigid sub-structure (or rigid block).

his result was very recently extended to structures with one rigid

lock and an arbitrary number of holes ( Cruickshank et al., 2015 ).

oreover, it was shown in ( Cruickshank et al., 2015; Finbow-Singh

t al., 2012 ) that swapping the rigid blocks for holes and vice versa

oes not alter the rigidity properties of these perforated structures.

he approach used here suggests that investigation of symmetry

spects of these general results for block-and-hole polyhedra and

lock-hole exchange would be a natural next step. This extension

s currently in progress. 

. Symmetry-extended mobility criteria 

The classic ( Hunt, 1978 ) counting criterion for mobility (rela-

ive freedoms) m − s of a mechanical linkage composed of n bodies

onnected by g joints is 

 − s = 6(n − 1) − 6 g + 

g ∑ 

i =1 

f i , (1)
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here the mobility is defined by the difference between the num-

er of mechanisms ( m ) and states of self-stress ( s ), and each joint

 permits f i relative freedoms. 

As discussed elsewhere ( Guest and Fowler, 2005 ), this count-

ng criterion can be derived formally by supposing one body to be

xed, then allowing for the six relative freedoms of each of the

ther (n − 1) bodies, then counting constraints by considering each

oint to remove six freedoms but to restore f i of them. Effectively,

e are supposing the system to be at first rigidly glued but then

o be freed up at each joint by the appropriate number of allowed

reedoms. 

The symmetry extension of (1) for a linkage in a starting posi-

ion with point group G is expressed in terms of representations

f the group, �, and properties of the contact polyhedron C . It is

 Guest and Fowler, 2005 ) 

(m ) − �(s ) = (�(v , C) − �‖ (e, C) − �0 ) × (�T + �R ) 

+ �freedoms , (2) 

here �( m ) and �( s ) are the representations of the mechanisms

nd states of self-stress. In this equation, �( v, C ) is the permutation

epresentation of the vertices of C . (A permutation representation

f a set has character χ ( S ) for operation S equal to the number of

bjects in the set that are left in place by the operation S .) �‖ ( e,

 ) is the representation of a set of vectors along the edges of C

nd has characters that depend on the number of edges unshifted

nder a given operation and on the effect of the operation on the

irections of vectors along those edges. �0 is the totally symmet-

ic representation ( �(S) = 1 for all S ); �T and �R are respectively

he representations of rigid-body translations and rotations. Lastly,

he term �freedoms is the representation of the total set of freedoms

otionally restored by the unfreezing of joints in the procedure de-

cribed above. We will also find useful the antisymmetric repre-

entation, �ε , which has characters χ(S) = 1 for proper operations

nd χ(S) = −1 for improper operations. 

The notion of the contact polyhedron C encapsulates the rela-

ionships between bodies and joints: each rigid element is associ-

ted with a vertex of C , and each joint is associated with an edge.

 is embedded in space, and G is the point group of the embedded

tructure. The vertices of C are embedded in the appropriate 2 D

r 3 D space, in a geometry that is consistent with the point group

ymmetry of the array of bodies and joints. Thus, C may have un-

etermined lengths and angles, where the symmetry allows. The

erm ‘contact polyhedron’ can be a misnomer, as C is not always

hree-connected and may sometimes have a non-planar graph, but

t seems to be the term that is used for this object: ‘embedded

ontact graph’ would be more precise. 

All the terms in (2) are either calculated for the particular

tructure ( �( v, C ), �‖ ( e, C ), �freedoms ) or are determined by the

roup and can be looked up in standard character tables ( Altmann

nd Herzig, 1994; Atkins et al., 1970 ). The freedoms term is de-

ermined by simple physical reasoning. In the case we envisage

ere, the bodies are placed at the vertices and edge-midpoints

f some polyhedron P . The graph of C is then the subdivision of

he graph of P (which, of course, means that C is not a polyhe-

ron, as it is only 2-connected). The joints correspond to the edges

f the subdivision, two for each original edge of P , and each is

 non-torsional hinge (i.e., has a hinge line that is not collinear

ith the line of centres of the bodies that the hinge connects). The

reedom allowed by the joint in this case is a relative rotation of

he two connected bodies about the hinge line. When C lies on a

pherical shell, as here, this relative rotation is fully symmetric un-

er any operation that preserves the associated edge of C . Hence,

freedoms in (2) can be replaced by �( e, C ), the permutation repre-

entation of the edges of C , to give the specific body-hinge form of

he symmetry-extended mobility equation appropriate to W and to
tructures like it: 

(m ) − �(s ) = (�(v , C) − �‖ (e, C) − �0 ) × (�T + �R ) + �(e, C) . 

(3) 

Fig. 2 shows the skeletons, Schlegel diagrams and contact

raphs of the three objects W, R and B. Their mobility is explored

n the next section. Fig. 3 defines the conventions used for the set-

ings of the symmetry groups that feature in the discussion. 

. Mobility of the Whiteley structure and variants 

Eq. (3) can be applied directly to the W framework and its vari-

nts R and B. In the tabular form that we have used elsewhere

 Fowler and Guest, 20 0 0; Guest and Fowler, 2005 ), the calculation

f characters for W at the high-symmetry point is 

O h E 8 C 3 6 C 2 6 C 4 3 C 2 4 i 6 S 4 8 S 6 3 σh 6 σd 

�(v , C) 20 2 2 0 0 0 0 0 4 6 

−�‖ (e, C) −24 0 0 0 0 0 0 0 0 −4 

−�0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 

−5 1 1 −1 −1 −1 −1 −1 3 1 

×(�T + �R ) 6 0 −2 2 −2 0 0 0 0 0 

−30 0 −2 −2 2 0 0 0 0 0 

�freedoms 24 0 0 0 0 0 0 0 0 4 

−6 0 −2 −2 2 0 0 0 0 4 

This gives the reducible representation 

(W , O h ) : �(m ) − �(s ) = A 2 u − A 1 u − T 1 g − T 2 u , (4)

nd tells us that there are at least seven states of self-stress span-

ing symmetries A 2 u (one) and T 1 g and T 2 u (three each) and at

east one mechanism of symmetry A 1 u . The scalar count (1) gives,

ith n = 20 , g = 24 , and f i = 1 for all i : m − s = 6(20 − 1) − 6 ×
4 + 24 × 1 = −6 , telling us only that the structure is over-braced,

ith an excess of 6 states of self-stress over mechanisms. 

Hence, counting without symmetry has shown the structure to

e over-constrained, with at least six states of self-stress. Symme-

ry has revealed the existence of a mechanism, balanced by a to-

al of seven symmetry-detected states of self-stress; the A 2 u mech-

nism is one-dimensional (as it is of type A ) but is symmetry-

reaking in the full O h point group (as it is not of type A 1 g ). 

Motion along the mechanism reduces the point group symme-

ry to the group composed of those operations of O h for which

 2 u has character +1 . This group is T d . In the lower symmetry, the

obility representation is 

(W , T d ) : �(m ) − �(s ) = A 1 − A 2 − 2 T 1 . (5)

s there is no state of self-stress of A 1 symmetry to block the

echanism ( Guest and Fowler, 2007; Kangwai and Guest, 1999;

chulze, 2010 ), the mechanism is finite. Manipulation of the phys-

cal model suggests that there is no other mechanism in the ini-

ial tetrahedral structures. In principle, the symmetry calculation

ives only lower bounds on the numbers of mechanisms and

tates of self-stress, as there could be equisymmetric mechanisms

nd states of self-stress with cancelling contributions to the total

(m ) − �(s ) and hence undetectable by symmetry. In particular,

ymmetry has nothing to say about the location of the multifur-

ation point that appears further down the A 2 u pathway, as the

dditional mobility at that point depends on a specific geometry

t which sets of faces become coplanar. 

The mechanism has the same symmetry as the xyz cubic har-

onic in both symmetry groups: A 2 u in O h , A 1 in T d . 
Mobility of the other two variant structures can be calculated

n a similar way. Variant R has C 4 v symmetry and could be treated

y making a new table for this group, but as R and W have the
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b
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Fig. 2. Three perforated polyhedral structures based on the Whiteley example, shown as three-dimensional skeletons, Schlegel diagrams, and contact graphs. (a) The Whiteley 

structure (W) is derived by removing six disjoint square faces that occupied the octahedral positions in the Archimedean small rhombicuboctahedron ( Cundy and Rollett, 

1961 ). (b) Variant R is obtained by rotating the top layer of W by π /4 about a fourfold axis. (c) Variant B is obtained by rotating the middle layer instead. The three structures 

have related Schlegel diagrams (shown with holes unshaded) and all have the same contact graph C (that of a subdivided cube), but with different identifications between 

the 12 square and 8 triangular bodies and the vertices of C . 

Fig. 3. Generic contact graph C for structures W, R and B. The bodies occupy the 

vertices of the subdivided cube, and the hinges are represented by the edges. For 

the purpose of using symmetry to give labels to mechanisms and states of self- 

stress, the groups O h , C 4 v and D 4 h are chosen such that the class of σ d reflection 

planes always includes the symmetry plane that runs diagonally from lower left to 

upper right in the Schlegel diagram of C , i.e., including six vertices of C . In all three 

groups, x lies along the horizontal axis of the diagram, y along the vertical axis and 

z is normal to the plane of the paper. In this convention the unique mechanism, 

which preserves the special σ d plane for all three perforated polyhedra, has the 

symmetry of the xyz cubic harmonic. 
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same contact graph, the result follows by descent in symmetry, by

simply deleting irrelevant operations from the W table. The scalar

count is m − s = −6 , as before, since scalar counting corresponds

to taking the character under the identity operation. The symmetry

count (in the setting of C 4 v indicated in Fig. 3 ) is 

(R , C 4 v ) : �(m ) − �(s ) = B 2 − 2 A 2 − B 1 − 2 E, (6)
ith the finite B 1 mechanism now leading initially to a C 2 v point

roup in a setting where the σ d mirror planes of the structure are

reserved, and where the mobility detected by symmetry is 

(R , C 2 v ) : �(m ) − �(s ) = A 1 − 3 A 2 − 2 B 1 − 2 B 2 . (7)

he interpretation is the same as for W, with appropriate changes

o representation labels. Again, the mechanism has the symmetry

f the xyz harmonic. 

For the third variant, B, the calculation is similar. In maximum

ymmetry, B has the dihedral D 4 h symmetry, which is again a sub-

roup of O h . The result for the mobility representation is 

(B , D 4 h ) : �(m ) − �(s ) = B 1 u − A 2 g − E g − A 1 u − B 2 u − E u , (8)

ith the symmetry-detected B 1 u mechanism leading to structures

ith point group D 2 d and 

(B , D 2 d ) : �(m ) − �(s ) = A 1 − 2 A 2 − B 1 − 2 E. (9)

nce more, the mechanism is equisymmetric with the cubic har-

onic xyz . 

The mechanism is ‘generic’ for the three subdivisions of the

raph of the cube. The full octahedral symmetry of W is in a sense

n accident; the mechanism survives in the group of the more gen-

ral square prism (B) and the group of the square pyramid (R)

here the symmetry elements that exchange top and bottom faces

f the prism are lost. We can also imagine general versions of W,
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Fig. 4. A construction of flexible polyhedra that generalises examples W, R and B. A cubic polyhedron P (left) is subdivided to give the subdivision S(P) (centre) as the 

contact graph C of the structure (right) composed of triangular and rectangular rigid plates with holes replacing the original faces of P (indicated by circles). 

Fig. 5. Relations between component symmetries in the contact graph C and its cubic parent P : vertices (top); edges of C (bottom). Vertices common to both P and C are 

shown as solid circles, vertices that belong to C alone are shown as open circles. 
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 and B based on [ n ]-prisms, with groups D nh , C n v and D nh . These

ill be discussed below. 

Structure W is based on a decoration of the cube, but anal-

gous structures belonging to the tetrahedral and icosahedral

oint groups are also easily envisaged. Experimentally, removal

f an independent set of four triangular faces from the cuboc-

ahedron (with 12 vertices, 6 square and 8 triangular faces) is

ound to give a rigid structure. Analysis in the T d group gives the

esult 

(m ) − �(s ) = −A 1 − E − T 2 , (10)

orresponding exactly to the six states of self-stress implied

y the scalar count of −6 . Experimentation with the physical

odel confirms that no mechanism has been missed out in

his case. An explanation of ‘why’ the states of self-stress rep-

esentation has the particular form A 1 + E + T 2 follows from de-

ailed considerations about the symmetries of cubic polyhedra (see

ection 4 ). 

Analogous reasoning for the icosahedrally symmetric small

hombicosidodecahedron ( Cundy and Rollett, 1961 ) (which has

0 vertices, 12 pentagonal faces, each to be replaced by holes,

0 square and 20 triangular faces) gives a result that re-

eals a triply degenerate mechanism for the high-symmetry I h 
tructure: 

(m ) − �(s ) = T 2 u − A u − T 1 g − H u . (11)

here are multiple distortive pathways that take the structure

own five-fold, three-fold and two-fold branches of the subgroup

ree. These pathways have featured in several of our studies of

echanisms and symmetry breaking in icosahedral structures and

ackings ( Fowler et al., 2008; Guest, 1999 ). 

As this section has shown, arrangement of faces and holes on

ust three polyhedral frameworks has already yielded systems with

any, one and no symmetry-detectable mechanisms, respectively.

 more general model will encompass all three types of behaviour

nd show that infinite families with each type of behaviour can be

redicted. 
. A model for perforated structures based on cubic polyhedral 

arents 

.1. Construction 

A construction that includes all the examples discussed so far is

ased on a general cubic polyhedron (a polyhedron whose skele-

on is a cubic polyhedral graph, hence a polyhedron with all ver-

ices of degree three). The graph of the starting n -vertex polyhe-

ron P is decorated by addition of an extra vertex of degree two at

he midpoint of each edge of P i.e., by edge subdivision of P . The

ew graph S(P ) is the skeleton of the contact polyhedron C for a

erforated structure H with an obvious embedding based on the

mbedding of P . Fig. 3 shows the contact graph common to the

xamples of W, R and B discussed earlier; in these simple cases,

he polyhedron P is the cube. 

If P has n vertices, C has n degree-three and 3 n /2 degree-

wo vertices, representing 5 n /2 bodies, and 3 n edges represent-

ng joints. Each face of P corresponds to a hole in H . In the most

ymmetrical realisation, the bodies corresponding to vertices of P

ould be triangles and those corresponding to edge-midpoints of

 would be rectangles (see Fig. 4 ). 

.2. Mobility formula 

The general expression (3) for the mobility of the object H with

ontact polyhedron C applies here, but it can also be reformulated

n terms of the parent polyhedron P . As all vertices of C are either

riginal vertices of P , or lie at edge centres of P ( Fig. 5 , top line), 

(v , C) = �(v , P ) + �(e, P ) . (12)

he edges of C can be taken in symmetric and antisymmetric com-

inations aligned with the original edges of P , so ( Fig. 5 , bottom

ine) 

(e, C) = �(e, P ) + �‖ (e, P ) , (13)

here �‖ ( e, P ) is the representation of a set of vectors along the

dges of P . Likewise, the vector representation �‖ ( e, C ) is equal to
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the same sum, 

�‖ (e, C) = �(e, P ) + �‖ (e, P ) , (14)

as no symmetry operation of P has the effect of reversing in place

an arrow on one of the derived edges in C . 

Substitution of (13) and (14) into (3) gives 

�(m ) − �(s ) = (�(v , P ) − �‖ (e, P ) − �0 ) × (�T + �R ) 

+ �(e, P ) + �‖ (e, P ) , (15)

which could be interpreted as the mobility of an object that has P

rather than S(P ) as its contact polyhedron, but has an extra set of

mechanisms consisting of ‘slides’ along the edges of P . 

We can go further by taking explicit account of the fact that

P is a cubic polyhedron. For a cubic polyhedron, the representa-

tion �( v, P ) × �T , which is the symmetry of orthoschemes of local

vectors attached to the vertices of P (i.e., the so-called mechanical

representation of vibrational theory Wilson et al., 1955 ) is related

to edge representations as 

�(v , P ) × �T = �(e, P ) + �‖ (e, P ) , (16)

implying 

�(v , P ) × �R = �(e, P ) × �ε + �⊥ (e, P ) . (17)

Eq. (16) is the basis of a force-field model for the vibrations

of cubic polyhedral frameworks ( Ceulemans et al., 2001 ). For such

polyhedra, the freedoms of the vertices, which encompass internal

vibrations and rigid-body motions, span the same symmetry as the

complete set of edge stretches and edge slides, in contrast to the

vibrations of the dual delta hedral frameworks, which can be de-

scribed by a purely edge-stretching force field. 

The edge terms in (15) can be simplified by using spherical-

shell theorems for the π representation ( Fowler and Quinn, 1986;

Quinn et al., 1983; 1984 ) associated with the edges, i.e., the sym-

metry of the set of tangential vectors along and across edges: 

�(e, P ) × �T = �(e, P ) + �‖ (e, P ) + �⊥ (e, P ) , (18)

�(e, P ) × �R = �(e, P ) × �ε + �⊥ (e, P ) + �‖ (e, P ) , (19)

and hence the terms needed for simplification of (15) are 

�‖ (e, P ) = �(v , P ) × �T − �(e, P ) (20)

and 

�‖ (e, P ) × (�T + �R ) = (�‖ (e, P ) + �⊥ (e, P )) × �T 

= (�(e, P ) × �T − �(e, P )) × �T 

= �(e, P ) × �T × �T − �(e, P ) × �T . (21)

Collecting terms, (15) becomes 

�(m ) − �(s ) = �(v , P ) × �T − �(e, P ) × �� − (�T + �R ) , (22)

or, 

�(m ) − �(s ) + �T + �R = �(v , P ) × �T − �(e, P ) × ��, (23)

where edge-vector representations have been eliminated at the

cost of introducing a new constant representation �� that depends

on the group but not on the particular polyhedron and is defined

by, 

�� = �T ×�T −2�T − �ε = (�T − �0 ) × (�T − �0 ) − (�ε + �0 ) . 

(24)

4.3. Character computation 

The advantage of the formulation set out in the preceding sec-

tion is that it reduces the calculation of mobility of the structure H

with contact polyhedron C to counting of the edge and vertex ele-

ments of P that are in special positions. Specifically, the vertices of

a cubic polyhedron can lie on, at most, E, C and σ symmetry el-
3 
ments, and edges can be preserved by at most E, C 2 and σ . Now,

T has trace χT (C φ ) = 2 cos φ + 1 , and hence χT (C 3 ) = 0 , and for

ny reflection �� has trace χT (σ ) = 0 . Furthermore, as P is cubic,

he trace under the identity is 

RHS (E) = m − s + 6 = 3 n − 2(3 n/ 2) = 0 , (25)

hich simply re-expresses the net overbracing by six states of self-

tress. The only terms on the RHS of (23) that survive under other

perations give traces 

RHS (C 2 ) = −2 e 2 (26)

nd 

RHS (σ ) = v σ , (27)

here e 2 is the number of edges of P fixed by the given C 2 axis

 e 2 = 2 , 1 , or 0) and v σ is the number of vertices of P fixed by the

iven mirror plane. 

The mobility of all perforated structures constructed according

o the recipe of subdivision of a cubic polyhedral parent can there-

ore be calculated using a tabular calculation based on (23) , but

oncentrating on C 2 and σ operations only, notionally filling out

he reducible character with a zero under all other operations, and

hen subtracting �T + �R , the representation of the rigid-body mo-

ions. Hence for W, the calculation in O h needs only the reduced

et of columns 

Reduced O h 6 C 2 3 σh 6 σd 

�(v , P) × �T 0 0 4 

−�(e, P) × �� −4 0 0 

�(m ) − �(s ) + �T + �R −4 0 4 

(with zero χRHS ( R ) implied for all other operations R ) which re-

uces to −A 1 u + A 2 u + T 1 u − T 1 u , and after subtraction of �T + �R =
 1 u + T 1 g , gives 

(m ) − �(s ) = A 2 u − A 1 u − T 1 g − T 2 u , 

xactly as calculated from (23) with the full character table. 

The vertex/edge form (23) for the mobility criterion is well

dapted to treatments of infinite families of structures built from

ubic polyhedra and results are listed in the next section. These

nclude calculation of the mobility of structures derived from sub-

ivision of polyhedra belonging to the families of prisms (and their

elatives, the wedges and barrels), multilayer prisms, leapfrogs and

uadruples, as shown in the following. 

. Examples 

.1. Prisms as parents P 

The [ N ]-prism has two faces of size N , and N faces of size 4. It

s convenient to treat odd and even prisms separately. 

The odd prism has two distinguished faces of size N = (2 p + 1) ,

ith maximum point-group symmetry D (2 p+1) h , which is a sub-

roup of the group of the centro-symmetric cylinder, D ∞ h . Calcu-

ations can be carried out in the higher group retaining only C ′ 
2 
,

v and σ h symmetry elements. Reflection in the horizontal mirror

lane shifts all vertices. An odd prism has v σ = 2 for the (2 p + 1)

v reflections, and e 2 = 1 for the (2 p + 1) C ′ 
2 

rotations. 

The mobility representation for a system with contact graph C

ormed by the subdivision is therefore 

 ∞ h : �(m ) − �(s ) = −�+ 
u − �−

u − 	u − 	g , (28)

r, for finite p , 

 (2 p+1) h : �(m ) − �(s ) = −A 

′′ 
1 − A 

′ 
2 − E ′ 1 − E ′′ 1 . (29)

ymmetry has therefore detected six states of self-stress but no

echanism for systems based on the odd prism. 
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Fig. 6. Non-isomorphic flexible perforated polyhedra based on a single contact 

graph. C is the contact graph formed by subdivision of the [2 p ]-prism. W 

′ , R ′ and B ′ 
are symmetrical realisations with 4 p triangular and 6 p rectangular bodies. All three 

have single mechanisms giving initial descent to a halving point group, as indicated. 

For 2 p = 4 , W 

′ can achieve the higher O h symmetry, with initial descent to T d . 

Fig. 7. Schlegel diagram of the [ N ]-barrel with N = 9 . 
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On the other hand, the even prism has two distinguished faces

f size N = 2 p, with maximum point-group symmetry D 2 ph (or

xceptionally, for p = 2 , O h ). The even prisms do not extrapolate

o the D ∞ h supergroup, as for all finite p there are two classes

f vertical mirror planes and two classes of C 2 axes perpendic-

lar to the main axis. However, extrapolation along the series

 4 h , D 6 h , D 8 h , D 10 h ( Altmann and Herzig, 1994 ) shows the appro-

riate limiting form of the representations. An even prism has

 σ = 4 for σ d , and v σ = 0 for σ v , e 2 = 0 for C ′ 
2 
, and e 2 = 2 for

 

′′ 
2 

operations and for the C 2 operation associated with the princi-

al axis. Calculations must be carried out separately for N = 4 q + 2

nd N = 4 q . The mobility representation for a system with contact

raph C formed by the subdivision of the even prism is 

 (4 q +2) h : �(m ) − �(s ) = B 1 g − A 1 u − A 2 g − B 2 g − E 1 g − E 1 u ;
(30) 

 (4 q ) h : �(m ) − �(s ) = B 1 u − A 1 u − A 2 g − B 2 u − E 1 g − E 1 u . (31)

ymmetry detects seven states of self-stress and a non-degenerate

echanism for all even-prism parents. The B 1 g / B 1 u symmetry of

he mechanism implies a motion where alternate three-coordinate

ertices of C move up and down parallel to the main axis, with top

nd bottom rings moving in phase. 

.2. Wedges as parents P 

Further results for two families related to prisms are straight-

orwardly obtained. The first is the family of wedges . From any

 N + 1] -prism it is possible to construct a cubic polyhedron with

 = 2 N vertices that has two faces of the maximum possible size,

hich is N + 1 . This is done by ‘squeezing out’ one square face

rom between top and bottom faces of the prism. More precisely,

he [ N ]-wedge polyhedron has two faces of size N that share a

ommon edge, which also links two triangular faces; the remain-

ng N − 3 faces are square. For N > 3, the point group symmetry of

he wedge polyhedron is C 2 v . Subdivision of the edges leads to the

ontact graph of a perforated polyhedron which has no symmetry-

etected mechanism, but six states of self-stress that span rep-

esentations −A 1 − 3 A 2 − B 1 − B 2 (odd N ), or −A 1 − 2 A 2 − B 1 − 2 B 2 
even N ) in C 2 v . Hence, the symmetry approach predicts all wedges

o be rigid. 

.3. Barrels as parents P 

The second family derived from prisms comprises the barrels .

he [ N ]-barrel is constructed by placing two N -gons as in a prism

nd replacing the central cyclic strip of square faces by a cycle of

 N vertices joined alternately to vertices in top and bottom faces.

he resulting polyhedron has 2 N pentagonal faces, N in the corona

f each N -gonal face. An example is shown as a Schlegel diagram

n Fig. 7 . The symmetry of the [ N ]-barrel is D Nd , the point group of

he [ N ]-antiprism; for the special case of N = 5 , there is the possi-

ility of achieving I h symmetry when the [5]-barrel is equilateral

nd coincides with the regular dodecahedron. 

The symmetry treatment of perforated polyhedra with D Nd bar-

els as parents predicts in every case a single mechanism, in spite

f the obvious overbracing of the construction. Each barrel has

o edges on the principal axis, two edges on each C ′ 
2 

axis, and

our vertices in each σ d plane, and hence by (26) and (27) has

obility representation B 2 − A 2 − 2 B 1 − E 1 − E N−1 for even N , and

 2 u − 2 A 1 u − A 2 g − E 1 g − E 1 u for odd N . The mechanism has the

ymmetry of a translation along the principal axis. 

Case of N = 5 in maximum I h symmetry, is special. In the I h 
roup, the symmetry approach detects a triply degenerate mecha-

ism and nine states of self-stress (see Eq. (11) ). Descent in sym-

etry from I to D , a choice consistent with restriction of equiv-
h 5 d 
lence to the 2 N pentagonal faces around the body of the bar-

el, gives T 2 u → A 2 u + E 2 u , T 1 g → A 2 g + E 1 g , A u → A 1 u and H u →
 1 u + E 1 u + E 2 u , and the triply degenerate mechanism breaks up

nto a single mechanism of A 2 u symmetry and a pair of E 2 u sym-

etry. In the lower symmetry group, the pair is equisymmetric

ith a pair of states of self-stress and hence no longer gives rise

o a mechanism that is detectable by symmetry. The surviving A 2 u 

echanism has the symmetry of a translation along the principal

xis, even though the T 2 u set of mechanisms in I h corresponds

o a set of cubic harmonics, rather than to the cartesian triple

 x, y, z }. 

.4. Families of non-isomorphic perforated polyhedra based on a 

ommon contact graph 

The objects W, R and B are examples of this type. All have the

ame contact polyhedron (the subdivision of the cube), and es-

entially differ only in the point-group symmetry imposed by the

pecifics of the various bodies and hence the embedding of that

ontact graph in space. As noted in the introduction, the three

bjects are related by rotations of layers of bodies with respect

o a C 4 axis. A straightforward extension is to apply this rotation

echnique to the realisations of the contact polyhedron that arises

rom subdivision of the [2 p ]-prism. (See Fig. 6 .) If the bodies are

rranged in three layers (top: an alternating cycle of 2 p triangles

nd 2 p rectangles; middle: an alternating cycle of 2 p squares and

 p holes; bottom: as top layer), we can construct analogues W 

′ , R 

′ 
nd B 

′ of W, R and B. 
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P L(P ) Q(P )

Fig. 8. Transformation of faces of polyhedron P under leapfrog ( L (P) ) and quadrupling ( Q (P) ) transformations. 
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It is easy to see that all three cases have the same representa-

tion �(m ) − �(s ) as that calculated for the subdivision of the even

prism ( Section 5.1 ) in the appropriate point group, and that all will

share the same symmetry-detected mechanism. 

5.5. Inflated cubic polyhedra as parents P 

Cubic polyhedra can be inflated to yield other cubic polyhe-

dra using the family of Goldberg–Coxeter transformations ( Dutour

and Deza, 2004; Fowler and Manolopoulos, 2006 ). Two transfor-

mations of interest in applications to fullerenes for example are

the leapfrog L and quadrupling Q inflations ( Fowler and Redmond,

1992 ). Both preserve the point group symmetry of the parent.

Given an n -vertex parent P , L produces a cubic polyhedron with

3 n vertices, and Q produces one with 4 n vertices. 

The various reducible representations for sets of structural com-

ponents of the polyhedra L (P ) and Q (P ) can be derived from those

of P . These relations suggest some interesting questions about the

effects of transformations on perforated polyhedra. 

5.5.1. Leapfrog polyhedra as parents 

The leapfrog operation can be described in several equivalent

ways, one of which is illustrated in Fig. 8 . Each face of P is replaced

by a rotated inset of itself, and all new vertices are joined by edges

perpendicular to the original edges of P ; vertices and edges of P are

then discarded. 

For leapfrogs of cubic polyhedra ( Fowler and Redmond, 1992 ),

�(v , L (P )) = �(v , P ) × �R + �(e, P ) − �(e, P ) × �ε (32)

and 

�(e, L (P )) = �(v , P ) × �T + �(e, P ) . (33)

Consider two perforated polyhedra. One is derived from P , i.e.,

it has contact graph C = S(P ) . The other is derived from L (P ) and

has contact graph S(L (P )) . Mobilities of each can be calculated in

G, the point group of both P and L (P ) , using (23) . We can ask the

question: When is the symmetry-predicted mobility �(m ) − �(s )

equal for the perforated polyhedra based on a polyhedron P and

its leapfrog? 

Define the mobility difference �LP as the representation �(m ) −
�(s ) calculated with parent L (P ) minus �(m ) − �(s ) calculated

with P as parent. This representation is 

�LP = �(v , P ) × { �R − �0 − ��} × �T − �(e, P ) × { �R − �T } . 
(34)

�LP has character zero under all but reflection operations, for

which χLP (σ ) = 2 e ‖ + 2 e ⊥ − 2 v σ = 2(e ⊥ − e ‖ ) , where e ‖ and e ⊥
are respectively the numbers of edges of P lying in and crossing

the σ mirror plane, and v σ is the number of vertices of P lying in

that plane. The same result for χ ( σ ) could be derived by noting
LP 
hat leapfrogging affects e ‖ and e ⊥ as follows: e ‖ (L (P )) = e ⊥ (P ) =
1 
2 v σ (L (P )) and e ⊥ (L (P )) = 3 e ‖ (P ) . 

By either route, various conditions applying to equality of

(m ) − �(s ) for perforated polyhedra with C = S(L (P )) and C =
(P ) can be derived. The two structures have the same �(m ) −
(s ) if P is chiral, i.e., belongs to a pure rotational group C n , D n ,

 , O, I, or P is achiral but belongs to a group that contains no

eflection elements, i.e., C i , S 2 n . 
The smallest chiral cubic polyhedron has n = 10 vertices (see

.g., Fowler and Mitchell, 1996 ) and is of C 2 symmetry. All perfo-

ated polyhedra with C 2 parents are without symmetry-detectable

echanisms as �(m ) − �(s ) has χ(E) = −6 and χ(C 2 ) = 2 = −e 2 ,

nd so is −(2 + e 2 ) A − (1 + e 2 ) B . Similar reasoning shows that all

erforated polyhedra with D 2 or D N ( N odd) parents also lack

ymmetry-detectable mechanisms. Symmetry-detectable mecha-

isms are, however, possible for D 4 and D 6 parents P . 

The two structures have different �(m ) − �(s ) if P is bipartite

nd belongs to a group with a reflection plane, i.e., C s , C nh , C n v ,
 nh , D nd , T d , T h , O h , I h ; this follows as a bipartite polyhedron has

nly even faces, and any mirror plane cuts the polyhedron with

ither e ‖ � = 0 and e ⊥ = 0 or e ‖ = 0 and e ⊥ � = 0. 

When P is non-bipartite and belongs to a group with one or

ore mirror planes, the two perforated polyhedra share mobility

(m ) − �(s ) if e ‖ = e ⊥ for every mirror plane. Examples include

hose with P the tetrahedron (leapfrog = truncated tetrahedron)

nd the dodecahedron (leapfrog = truncated icosahedron, skeleton

f the C 60 molecule). 

Double leapfrogging restores the orientation of those faces de-

ived from the original parent. From (32), (33) and (34) it follows

hat if structures with C = S(P ) , C = S(L P ) , and C = S(L 

2 P ) are all

o share a common mobility �(m ) − �(s ) , it is necessary to have

 ‖ (P ) = e ⊥ (P ) = v σ (P ) = 0 for every reflection plane σ . This con-

ition can be achieved if and only if parent P has no reflection

lanes. In particular, all chiral parents P give an infinite chain of

erforated polyhedra based on C = S(L 

q (P )) , q = 0 , 1 , . . . that all

hare the same mobility. 

.5.2. Quadrupled cubic polyhedra as parents 

In quadrupling, each face of P is replaced by an unrotated inset

f itself and new vertices are joined by new edges to the corre-

ponding original vertices of P ; all original edges of P are discarded

see Fig. 8 ). 

For quadruples of cubic polyhedra, 

(v , Q (P )) = �(v , P ) + �(v , P ) × �T (35)

nd 

(e, Q (P )) = �(v , P ) × �T + �(e, P ) + �⊥ (e, P ) 

= �(v , P ) × (�T + �R ) + �(e, P ) × (�0 − �ε) , (36)

nd hence from (23) , the mobility of a structure whose parent

s Q (P ) , i.e., of a structure with contact graph C = S( Q ( P ) ) , can
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e written in terms of the vertex and edge representations of the

riginal polyhedron P as 

(m ) − �(s ) + �T + �R = �(v , P ) × { �0 + �T − �� − �ε × ��} 
×�T − �(e, P ) × { �0 − �ε} × ��} . (37) 

n this equation, the RHS has non-zero trace only for reflection

lanes σ , where χ ( σ ) is 4 e ‖ ( P ). A simple consequence is that

(m ) − �(s ) for C = S(Q (P )) includes no mechanism detectable by

ymmetry if P belongs to a point group without mirror planes. 

Quadrupling can preserve the mobility �(m ) − �(s ) in other

ircumstances. Perforated polyhedra with C = S(P ) and C =
(Q (P )) can share the same mobility, e.g., when v σ = 2 e ‖ = 0 , as

n a cylindrical polyhedron of appropriate symmetry that has a belt

f zig-zag hexagonal faces. 

. Connection with the Hoberman Switch-Pitch 

The Hoberman Switch-Pitch is a toy that presents a tetrahe-

rally symmetric ( T ) exterior, and exhibits a transformation from

 symmetric covering of the sphere that switches between two vi-

ually different closed forms when tossed in the air. This inside-

ut transformation is accomplished by movement along a unique

echanism, as the structure passes through a high-symmetry open

onfiguration of O symmetry. The manufactured object has special

earing to restrict the motion to a single mechanism that passes

hrough any potential multifurcation points with preservation of

ymmetry. The lack of reflection symmetry at all points along the

athway is not intrinsic to the nature of the mechanism, but is

aused by an aesthetic choice of the shapes for the moving parts.

hese superficial differences disappear at the level of the contact

raph, C . As a graph, C is identical with that derived from W , and,

f we move up to the O h supergroup and down to O , the symmetry

nalysis ( Chen et al., 2016 ) proceeds exactly as in Section 3 , with

eletion of all improper operations in the case of the Switch-Pitch.

hus, �(m ) − �(s ) is exactly as in (4) after removal of g / u labels,

nd hence predicts a mechanism that entails descent in symmetry

rom O to T . 

We note that this connection between the Switch-Pitch and the

erforated polyhedron W has also been observed by Walter White-

ey and communicated to the present authors. 

. Conclusion 

Symmetry extension of counting rules has been shown to ex-

lain observations of mobility in some heavily overconstrained sys-

ems and to suggest several classes of generalised objects where

exibility also survives the overbracing. Necessary conditions for

uch mobility take the form of counts applied under key ele-

ents of symmetry, and typically improve on the standard mobil-

ty count, which can be seen as counting under the identity ele-

ent alone. 
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